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Abstract 

Dryland (arid and semiarid) ecosystems are extensive, home to a third of the human 

population, and a major contributor to terrestrial Net Primary Productivity and associated 

biogeochemical cycles. Many dryland systems are undergoing woody plant encroachment, 

which can substantially alter landscape-scale soil nutrient dynamics via long-recognized 

“islands of fertility” mechanisms. To effectively constrain soil biogeochemistry responses to 

woody plant encroachment, predictions are needed for microbial biomass and especially 

microbial activity in addition to existing predictions for soil nutrients—referred to 

collectively hereafter as “collective soil functioning”. Here we evaluated whether collective 

soil functioning could be predicted from a suite of metrics including plant cover, 

precipitation, soil physiochemical characteristics, and topographic variables across complex 

landscapes undergoing woody plant encroachment by mesquite (Prosopis velutina). Plant 

cover alone predicted nearly half of the variability (R2 = 48.5%) in collective soil functioning 

and had a significant effect on each component of this index (soil nutrients, microbial 

biomass and microbial activity). Prediction strength for collective soil functioning increased 

to 55.4% and the error term decreased by 13.4% when precipitation, soil physiochemical 

characteristics and topographic metrics were also included in models (plant and environment 

model). Besides the expected effects of plant cover, other significant predictors of collective 

soil functioning included state factors such as topography, precipitation, and parent material 

along with soil age and bulk density. These results illustrate that mesquites influence many 

components of soil functionality but the strength of this effect depends on which component 

is analyzed and which environmental variables are considered.  
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Plain Language Summary 

Arid systems contain a significant amount of plant species and are home to one-third of the 

human population. Woody plant species are invading these historically grass-dominated 

areas, causing dramatic changes to soil health that are not fully understood. When mesquite 

trees invade, for example, soil nutrients become concentrated in the areas surrounding them, 

which changes the distribution of water and nutrients across the landscape. We evaluated the 

factors that were important in predicting soil health in an area undergoing this conversion. 

The soil health index we created included carbon, nutrients, the microscopic organisms that 

live within the soil and the ecosystem services they provide. Plants influenced soil health the 

most, followed by soil age, the amount of soil pore space, and soil pH. Our results show that 

the biomass and activity of soil microorganisms changes with mesquite invasion. This is 

important because if we can recognize changes in soil microorganisms along with other 

widely used soil variables, we could predict future changes in soil resources that may occur. 

This could allow us to develop early management plans that would mitigate the impacts of 

invasive plants in these sensitive and important regions. 

1 Introduction 

Dryland (arid and semiarid) ecosystems cover 41% of terrestrial land area and are 

home to more than a third of the human population (MEA, 2005). They account for 30-35 % 

of terrestrial Net Primary Productivity (NPP) and play large roles in global carbon (C), water, 

and nitrogen (N) cycles (Campbell & Stafford Smith, 2000; Field, 1998). Given their 

coverage and importance, the numerous threats these systems face present crucial research, 

management, and policy challenges (J. F. Reynolds et al., 2007). Over the past 150 years, for 

example, many xeric systems have undergone a dramatic shift in vegetation from grasslands 

and savannahs to shrublands due to woody plant encroachment (Archer, 1995; Van Auken, 
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2000). In the western U.S. alone, over 330 million hectares have undergone this conversion 

(Mitchel P. McClaran, 2003; Pacala et al., 2001).  

Woody plant encroachment affects key ecosystem services such as shifts in plant 

diversity (Ratajczak et al., 2012), carbon storage (González-Roglich et al., 2014), 

ecohydrology (Huxman et al., 2005), and the distribution of soil resources (Eldridge et al., 

2011). Soils are responsible for providing many essential ecosystem services including: water 

storage and filtration, nutrient cycling, litter decomposition, carbon sequestration, and climate 

regulation (Bardgett & Van Der Putten, 2014; Fierer et al., 2013; Zhou et al., 2011). These 

processes often require the production of microbial exoenzymes, hereafter referred to as 

“microbial activity”. Both biotic (e.g., plant communities) and abiotic (e.g., climate and soil 

texture) properties can influence soil functioning. For example, plants can directly influence 

their associated microbial communities through root exudates and the quantity and nutrient 

stoichiometry of plant litter inputs to soil (Cotrufo et al., 2013; Sinsabaugh et al., 1991). 

Across larger scales, land use and factors such as climate and geomorphic properties can alter 

soil microbial community diversity and activity (Cao et al., 2016; Drenovsky et al., 2010; 

Evans & Wallenstein, 2012). Woody plant encroachment has particularly important 

implications for soil biogeochemistry. For example, woody plant encroachment by velvet 

mesquites (Prosopis velutina) create “islands of fertility” where they alter nutrient dynamics 

and the soil resource pools in these islands become elevated compared to non-woody plant 

patches (Archer et al., 2000; Charley & West, 1975; W H Schlesinger et al., 1990). Shrub 

size, which can correlate with shrub age, contributes to these patterns with larger mesquites 

having more pronounced impacts on soil nutrients and microbial biomass than smaller ones 

(Cable et al., 2009; Throop & Archer, 2008). Although the local effects of mesquites on soil 

nutrients have been repeatedly quantified and are well recognized, soil biogeochemistry is 

constrained and regulated in many key ways by soil microbial biomass and activity. The 
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effect of mesquite encroachment on these more dynamic biological processes is less well 

known.   

Despite the recognized importance of soil microbial communities, there are large 

uncertainties regarding how spatial variation in microbial communities affects ecosystem 

processes at larger scales (Berg, 2012). The distribution of soil microorganisms and the 

relative importance of drivers that influence their dynamics are not fully resolved and, as a 

result, soil microbial communities are often excluded or oversimplified in ecosystem models. 

Improvements to models of soil biogeochemical dynamics require the inclusion of microbial 

biomass and activity in addition to soil nutrients—hereafter referred to as “collective soil 

functioning”. More specifically, understanding the responses of collective soil functioning 

that accompany woody plant encroachment can inform how changes in vegetation affect 

landscape scale nutrient dynamics, help identify important factors that facilitate or result from 

this shift in vegetation, and better inform management efforts aimed at mitigating these 

changes (Browning et al., 2014).  

To evaluate trends in collective soil functioning with woody plant encroachment we 

developed a “collective soil functioning index”. Soil indices are commonly used as measures 

of soil quality or health and can help to determine the effects of disturbance on soil 

functioning. Generally, soil indices are calculated from many simultaneously measured soil 

properties that provide information on the overall health or functioning of the soil ecosystem 

(Karlen et al., 1997). Soil indices allow for the combination of multiple related variables into 

a single measure that is straightforward and interpretable (Delgado-Baquerizo et al., 2016; 

Maestre et al., 2012). Traditionally, soil indices included information pertaining to the 

physical and chemical properties of a soil (Bone et al., 2014). More recently, soil biological 

properties, which often respond more rapidly to disturbance and control many of the 

functions that occur in soils including decomposition, nutrient cycling, and N-fixation, have 
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been included into soil index calculations (Bradford et al., 2014; Delgado-Baquerizo et al., 

2016; Paz-Ferreiro & Fu, 2016). The collective soil functioning index we developed includes 

measures of soil carbon, nutrients, and biological properties such as microbial biomass and 

activity. 

Here we evaluated the impact of mesquite encroachment, soil physiochemical 

variation, water dynamics, and topographic features on collective soil functioning. The Santa 

Rita Experimental Range (SRER) in Arizona, USA is the study site for this experiment. In 

addition to woody plant encroachment by mesquite, SRER also hosts a range of soil 

physiochemical variation, climatic gradients, and topographic factors making it an ideal 

location for the present study. Building upon past research cited above, we predict that while 

state factors such as parent material and soil age will broadly explain changes in collective 

soil functionality over climatic gradients, the biotic influence of mesquite cover will 

overwhelm the abiotic landscape influences on this index. Furthermore, within this index, the 

microbial activity parameters will respond to mesquite encroachment, contributing to the 

positive feedbacks with microbial biomass and nutrient availability that are predicted to 

increase with mesquite encroachment. Disentangling the relative importance of these factors 

on soil functionality can help us improve model predictions and management policies in an 

effort to ensure sustainable land management in woody plant encroachment systems 

worldwide.  

2 Materials and Methods 

2.1 Site Description 

Samples were collected at SRER on August 23 – 29, 2017. SRER is a 52,000 acre 

long-term semiarid rangeland research facility located in southeastern Arizona (Fig. 1). This 

historically grass-dominated ecosystem has been undergoing woody plant encroachment over 
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the past century, transforming the area into a mesquite-dominated savannah (Browning & 

Archer, 2011).  

We sampled sites across SRER capturing gradients in plant communities, 

precipitation regimes, topographic factors, and soil physiochemical properties (Fig. 1). Soil 

age, landform type, and parent material delineations for each site across the study area were 

defined based on geomorphic surface definitions outlined in Batchily et al. (2003). We chose 

to use geomorphic surface delineations across SRER to guide our sampling strategy because 

they allowed us to capture a high degree of variation in the aforementioned variables. We 

sampled a total of 15 sites, which consisted of two replicates for each of the seven 

geomorphic surfaces (A-G) with the exception of geomorphic surface E, which ended up 

having three replicates.  

Annual precipitation at SRER is bimodal with peaks during the monsoon (late July - 

August) and the winter rainy season (December - January) (Browning et al., 2008). Mean 

annual precipitation varies across SRER ranging from 275 mm at the lower elevations (≈ 900 

m; sites in geomorphic surfaces B, D, & E) up to 575 mm at the higher elevations (≈ 1,400 m; 

sites in geomorphic surfaces A & C; Supp. Table 1). There are a variety of soil types across 

SRER from Pleistocene and Holocene origins derived from both igneous and sedimentary 

rocks (Batchily et al., 2003).  

 Soil texture consisted mostly of sand, loamy sand, and sandy loam. Clay % was 

highest at the alluvial fan and basin floor sites of middle to early Pleistocene soil ages (sites 

located in geomorphic surfaces B, E, & G; Supp. Table 1) and lowest at the alluvial fan site 

of Holocene to Late Pleistocene soil ages (sites F1 and F2). Sand % was highest in igneous 

rock derived soils of site F and lowest at alluvium soils of sites located in geomorphic 

surfaces B and C and limestone sedimentary rock derived soil of sites E1-E3. Average soil 

pH ranged from 6.06 – 8.83 across sites with soils derived from limestone sedimentary rock 
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having more alkaline pH values (sites E1-E3; Supp. Table 1) and soils derived from igneous 

rock having more acidic pH values (sites in geomorphic surfaces A, F, & G; Supp. Table 1). 

High elevation sites in the floodplain, on hills and mountains, and in the alluvial fan 

supported the highest aboveground biomass (sites in geomorphic surfaces A, C, F, & G; 

Supp. Table 1) while lower elevation sites in the alluvial fan had the lowest aboveground 

biomass (sites in geomorphic surfaces B, D, & E; ). 

2.2 Field Sampling and Mesquite Biomass Estimates 

At each site, three 5 m x 5 m plots were established for a total of 45 plots. Each of the 

three plots had a dominant plant cover of either mesquite, grass, or no plants (henceforth 

referred to as the “bare” plots). Soil samples were collected to 10 cm depth. In mesquite 

plots, soil samples were collected from opposing sides of the bole, dripline, and a mid-point 

halfway between the bole and dripline. In the grass plots, soil samples were collected from 

opposing sides of the grass rhizosphere. In the bare plots, two samples were taken from 

random locations within the plot with no plant growth. Duplicate samples were homogenized 

to represent a single composite soil sample for each plot. Samples were then stored on ice and 

transported to the lab for analysis. Litter depth was measured at the location soil was 

sampled. Tree height was measured in the field for the trees in the mesquite plots. Mesquite 

biomass was calculated with the allometric equation (Eqn. 1) presented in McClaran et al. 

(2013) using the measured tree height values. 

Eqn. 1: ln(𝑌) = −3.20 + 3.00(ln(𝑋)) ∗ 1.09 

Where X = tree height (m) and Y = foliar biomass (kg). 

2.3 Laboratory Analysis 

Soil samples were sieved using 2-mm mesh and then analyzed for physical, chemical, 

and biological properties. Percent organic matter (OM %) of samples was determined by the 
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loss on ignition method of heating samples at 500 °C for 4 hrs (Nelson & Sommers, 1965). 

Soil pH was measured in deionized water with a 1:2 soil-to-solution ratio using sympHony 

VWR pH electrode probe (Nicol et al., 2008). Soil texture analysis (sand, silt, and clay %) 

was determined according to the hydrometer method following dispersal with sodium 

hexmetaphosphate (Ashworth et al., 2001; ASTM, 2007; Bouyoucos, 1962; Day, 1965). Bulk 

density was determined with Soil Water Characteristics Hydraulic Properties Calculator 

software from USDA-ARS (version 6.02.74) using sand, silt, clay, and OM % values. This 

Pedotransfer Function (PFT), which is widely used in the literature, is based on > 6,000 

samples from the USDA/NRCS National Soil Characterization database (Saxton & Rawls, 

2006). Furthermore, when recently tested on soils from arid and semiarid regions it produced 

high accuracy and low biased results, supporting the use of it in the present analysis (Sevastas 

et al., 2018). 

Microbial biomass C and N (MBC  and MBN respectively) in the soil was measured 

using the chloroform fumigation extraction method (Beck et al., 1997). Paired samples that 

were either fumigated with ethanol-free chloroform or non-fumigated were extracted with 25 

mL 0.5 M K2SO4. Samples were shaken for 1 hour, filtered, and stored at -20 °C until 

processing using a non-purgeable-organic-C protocol on a Shimadzu total organic carbon 

analyzer (TOC 5000) equipped with a total dissolved nitrogen module (Shimadzu Scientific 

Instruments, Inc., Columbia, MD, U.S.A.). Efficiency factors for MBC (kEC = 0.45; Beck et 

al., 1997) and MBN (kEN = 0.54; Brookes et al., 1985) were used to calculate microbial 

biomass C and N concentrations as the difference between fumigated and non-fumigated 

samples. Values measured in the non-fumigated samples represented soil dissolved organic 

carbon (DOC) and total dissolved nitrogen (TDN) amounts. 

Soil ammonium (NH4
+), nitrate (NO3

-), and rates of net N-mineralization were 

determined using K2SO4 extraction (Robertson et al., 1999). Air-dried soil (5.0 g) was 
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brought up to 60 % water holding capacity and incubated for a week. K2SO4 extractions were 

performed on samples before and after the incubation with 25 mL of 0.5 M K2SO4. Samples 

were shaken for 1 hour, filtered, and stored at -20 °C until processing. All K2SO4 extracts 

were analyzed colorimetrically with 2-phenylphenol for NH4
+-N (Rhine et al., 1998) and the 

vanadium method of Doane & Horwáth (2003) for NO3
--N using Synergy™ 4 Multi-Mode 

microplate reader. Net N-mineralization was calculated as the difference between the sum of 

NH4
+-N and NO3

--N before and after the incubation. Pre-incubation NH4
+ and NO3

- values 

were used in analysis. 

Potential extracellular enzyme activity (EEA) was measured using a fluorometric 

deep-well microplate technique following Gebhardt et al. (2017) modified from Wallenstein 

et al. (2012). Prior to the assays, soil pH was used to determine the appropriate buffer 

solution. Soil slurries were prepared with 2.75 g of soil that was stored at 4 ˚C and 91 mL of 

either tris or sodium acetate buffer, which was titrated to a pH that closely resembled the soils 

analyzed. We measured potential activity of seven hydrolytic exoenzymes. Four of the 

exoenzymes analyzed hydrolyze carbon-rich substrates: α-Glucosidase (AG), β-Glucosidase 

(BG), β-D-cellubiosidase (CB), and β-Xylosidase (XYL). Two of the exoenzymes analyzed 

hydrolyze nitrogen rich substrates: N-acetyl-β-Glucosaminidase (NAG) and leucine 

aminopeptidase (LAP). Phosphatase (PHOS), the final exoenzyme assayed, hydrolyzes 

phosphorus rich substrates. For each exoenzyme assayed, 100 μL of 200 μM fluorometric 

substrate was added to 900 μL of soil slurry. Standards for standard curves and assays were 

incubated at 25 °C for 1 hour or 40 minutes respectively. Fluorescence was measured on 

Synergy™ 4 Multi-Mode microplate reader with an excitation wavelength of 365 nm and an 

emission wavelength of 450 nm. Incubation time or standard curve dilutions were adjusted 

for samples that had activity higher than the detection limit.  
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DNA was extracted from soils using the DNeasy PowerSoil HTP 96 Kit (Qiagen, 

Hilden, Germany) and concentration was measured on Synergy™ 4 Multi-Mode microplate 

reader. DNA concentration has been used as a proxy of soil biomass in other studies and it 

had significant (p < 0.001) correlations (R2 values ranged from 0.400 – 0.470) with all other 

metrics of microbial biomass we measured (MBC, MBN, and OM %), supporting its use in 

the present analysis (S. L. Johnson et al., 2012; Kuske et al., 2002). 

2.4 Remote Sensing Data Products 

Precipitation was interpolated in ArcGIS (version 2.3.2) from monthly rain gauge 

measurements on gauges dispersed across SRER. Monthly rain gauge measurements were 

provided by the Santa Rita Experimental Range Digital Database. Funding for the digitization 

of these data was provided by USDA Forest Service Rocky Mountain Research Station and 

the University of Arizona (Mitchel P. McClaran et al., 2002). Three precipitation values were 

used in analysis: one value that represented the total precipitation that occurred 12 months 

prior to sampling (1yr precip), one value that represented the total precipitation that occurred 

8 months prior to sampling including both winter and summer monsoon amounts (8mo 

precip), and a final value that represented the total precipitation that occurred 3 months prior 

to sampling including just the summer monsoon amount (3mo precip). 

Topographic factors such as elevation, slope, and aspect were calculated as the 

average value for each plot from The National Ecological Observatory Network’s (NEON) 

Airborne Observation Platform (AOP) L3 LiDAR data products (Supp. Table 2). NEON is a 

program sponsored by the National Science Foundation and operated under cooperative 

agreement by Battelle Memorial Institute. This material is based in part upon work supported 

by the National Science Foundation through the NEON Program. Aboveground biomass was 

calculated as the sum of aboveground biomass for all pixels that fell within the plot boundary 

from NEON’s L2 spectrometer data product (Supp. Table 2).  
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2.5 Indices 

To calculate the collective soil functioning index, we first log normalized (and added 

a constant value to avoid negative values, when needed) and standardized each soil variable 

measured using the Z-score transformation. Standardized variables were then averaged to 

obtain the collective soil functionality index. The 16 variables used to calculate this index 

included: OM %, DOC, TDN, NH4
+, NO3

-, all seven potential exoenzyme activities (AG, BG, 

CB, XYL, NAG, LAP, and PHOS), net N-mineralization, MBC, MBN, and DNA 

concentration. 

We recognize that decreases in one variable can be compensated for by increases in 

another using the averaging approach applied here (Gamfeldt et al., 2008). Correlation 

coefficients between most of the soil variables were positive, except for N- mineralization 

and the nitrogen degrading exoenzymes, where the strongest negative correlation coefficient 

was only -0.21. Furthermore, none of the negative correlations coefficients were significant 

(Supp. Table 6). Each individual variable used in the collective soil functioning index 

calculation was also analyzed independently (Figs. 4 & 5), which allowed us to evaluate 

similarities and differences that emerged in predictor variable importance between these two 

approaches.  

2.6 Data Analysis 

All statistical analysis was performed in R version 3.4.4 (R Core Team, 2018). In 

most cases, data transformations did not result in normally distributed data. As such, data 

were left untransformed, unless specified otherwise. Analysis of variance (ANOVA) was 

performed to determine differences among sites and plant types in measured variables. 

Although ANOVA generally tolerates violations to the assumption of normality, 

nonparametric Kruskal-Wallis tests were also ran on the data (Blanca et al., 2017; Glass et 
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al., 1972; Harwell et al., 1992; Lix et al., 1996). In all cases, nonparametric analysis exhibited 

the same trends as parametric analysis, so parametric results are presented here since they 

provide more efficient inferences than nonparametric procedures. Tukey’s post-hoc 

comparison tests were run on significant (p < 0.05) differences. Regression analysis was used 

to analyze relationships between mesquite size, soil physiochemical properties, water 

dynamics, topographic factors, plant variables, and the variables included in the collective 

soil functioning index. 

Random forest modeling was used to identify the most important predictors of 

collective soil functionality while including both continuous and categorical variables 

simultaneously in the analysis. Each of our random forest analyses built 5000 trees and the 

square root of the total number of predictor variables was used to determine the number of 

variables randomly sampled as candidates at each split. This analysis was done with the 

randomForest R package. Each tree in the random forest analysis was built on two-thirds of 

the data and tested on the remaining third. The importance of each predictor variable was 

determined by the average decrease in prediction accuracy across all trees, or the average 

increase in mean square error (mse) between the data the tree was built on and the remaining 

third of the data the tree was tested on. Significance of each predictor variable was 

determined with the rfPermute R package.  

To determine whether the inclusion of additional explanatory variables improved 

model performance two model iterations were run. The “plant only model” included the three 

plant variables measured: plant cover type, aboveground biomass, and litter depth. The “plant 

and environment model” included plant variables, soil physiochemical properties, water 

dynamics, and topographic variables. Assessment on the inclusion and exclusion of predictor 

variables on model performance was determined by repeating the random forest analysis over 
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1,000 permutations. Model accuracy was assessed with R2 and mse values from the 

permutations.  

Differences among mesquite-associated soils were not always significant but, when 

they were, the bole samples were always highest. As such, when we wanted to analyze 

mesquite-specific impacts on soil dynamics, bole samples were used in analysis (e.g. Fig. 2). 

In the random forest analysis, all three mesquite-associated soil samples were included in the 

analysis with the “plant cover” explanatory variable accounting for this difference. 

3 Results 

3.1 Microbial activity patterns echo those of microbial biomass and soil nutrients as a 

function of plant cover 

Across all sites, plant cover type influenced belowground dynamics. Mesquite-

associated soils generally had the highest soil nutrient, potential exoenzyme activities, and 

microbial biomass values while bare soils had the lowest (Fig. 2). Soils associated with 

mesquite trees had significantly higher (p < 0.01) OM %, DOC, TDN, NH4
+, and NO3

- than 

soils associated with grasses or bare ground patches (Fig. 2a-e). Variability in soil nutrient 

values was also largest in soils associated with mesquite trees. Plant cover type also had a 

significant impact on exoenzyme activities. Individually, carbon-acquiring AG and BG 

exoenzyme activities were significantly higher in mesquite soils compared to bare soils but 

grass and mesquite AG and BG activities were not significantly different from each other 

(Fig. 2f & g). Potential XYL exoenzyme activity was the highest in the grass soils and there 

was no significant difference between mesquite and grass or bare soil XYL activity (Fig. 2i). 

Potential CB, NAG, and PHOS potential exoenzyme activity were highest in mesquite soils 

but potential activity differences among plant cover type were not significant (Fig. 2h, j, & l). 

Potential LAP exoenzyme activity displayed a similar trend to XYL with activity in the grass 
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soils being the highest but, again, this was not a significant difference (Fig. 2 k). Plant cover 

type also had a significant impact on microbial biomass (p < 0.05). Microbial biomass 

carbon, nitrogen, and DNA concentration were significantly higher in mesquite soils 

compared to bare patch soils but could not be differentiated among soils associated with 

mesquites or grasses (Fig. 2m-o). 

Mesquite biomass accounted for some of the variability observed in soil nutrients and 

microbial biomass values (significant R2 values range from 0.171 – 0.300; Supp. Table 4). 

Compared to all of the other soil variables analyzed, MBN had the largest amount of variance 

explained by mesquite biomass (R2 = 0.300; Supp. Table 4). The NEON derived 

aboveground biomass parameter also had a significant positive correlation with mesquite 

biomass, which provides support that our estimates of mesquite biomass, derived from 

allometric equations, accurately reflected actual tree biomass.  

3.2 Collective soil functioning and individual metrics for microbial activity, microbial 

biomass and soil nutrients are predicted by plant cover and improved with environmental 

variables 

Random forest modeling was used to help explain the variation observed in collective 

soil functioning (Fig. 3). When plant variables were the only explanatory variables included 

in the models (plant only model), only 48.5 % of the variation in collective soil functioning 

was explained and all three plant variables were significant predictors (Fig. 3a). When 

models included plant variables, soil physiochemical properties, water dynamics, and 

topographic factors (plant and environment model), 55.4 % of the variability in collective soil 

functioning was explained and the error term decreased from 0.217 to 0.188 (Fig. 3b). Plant 

variables, soil age, bulk density, and topographic factors were the most important significant 

predictors of the collective soil functioning index (Fig. 3b). The inclusion and exclusion of 



 

 

©2020 American Geophysical Union. All rights reserved. 

explanatory variables had a significant effect on model performance. Models with only plant 

variables (plant only model) had significantly lower R2 values than the plant and environment 

model (6.84 % reduction in model performance; p = 2.2 x 10-16). 

Not surprisingly, individual soil nutrients followed similar trends to the collective soil 

functioning index (Fig. 4). Bulk density, soil age, topographic factors, and plant variables 

were significant predictors of OM %, DOC, TDN, and NO3
- (Fig. 4). Aspect and soil pH 

were the most important predictor variables of NH4
+ (Fig. 4d). 

Notability, predictive models for seven out of ten individual metrics of microbial 

activity and biomass had R2 values exceeding 0.400 (Fig. 5). Considering all individual soil 

functioning variables, microbial exoenzymes had the highest R2 values in the predictive 

models, exceeding 0.600 for NAG and PHOS activities (Fig. 5 e & g). Soil pH was a 

dominant predictor variable for all exoenzyme activities except CB and XYL (Fig. 5 a-g). All 

microbial biomass metrics (MBC, MBN, and DNA concentration) had R2 values greater than 

0.400 (Fig. 5 h-j).  Plant variables were significant predictors of microbial biomass (Fig. 5 h-

j).  

Regression analysis showed that bulk density, precipitation, topographic factors, and 

plant variables each had significant relationships with all individual variables included in the 

collective soil functioning index (Supp. Table 5). Bulk density had a significant negative 

relationship with all soil nutrient and microbial biomass variables and many of the soil 

activity measures. Precipitation regimes, especially the 1-year and 8-month intervals, had 

significant positive relationships with all soil nutrients and many of the soil exoenzyme 

activities. Slope and elevation both had significant positive relationships with most of the soil 

variables included in the collective soil functioning index. Aboveground biomass and litter 

depth also had significant positive relationships with most soil variables included in the 

collective soil functioning index (Supp. Table 5). 
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There were also significant relationships between many of the soil variables included 

in the collective soil functioning index. All of the soil nutrient variables had significant 

positive relationships with other soil nutrients and microbial biomass variables, with 

correlation coefficients ranging from 0.39 to 0.86 (Supp. Table 6). There were also 

significant positive correlations between soil exoenzyme activities and soil nutrients, 

especially OM % and NO3
-. Microbial biomass measures had significant positive correlations 

with both other microbial biomass measures and all exoenzyme activities except NAG. All 

exoenzyme activities except LAP, had strong positive correlations with other exoenzyme 

activities. N-mineralization did not have significant correlations with any of the other 

measured soil variables (Supp. Table 6).   

4 Discussion 

4.1 In drylands, plant cover alone has a large impact on soil biogeochemistry  

Similar to other studies, our results support the “fertility island” hypothesis that has 

been proposed to explain mesquite impacts on soil biogeochemistry (Fig. 2; Charley & West, 

1975; Reyes-Reyes et al., 2002; Schade & Hobbie, 2005; W H Schlesinger et al., 1990; 

Wheeler et al., 2007) and extends it to include microbial activities and biomass. 

Concentrations of soil resources under vegetation patches can be a result of both biotic and 

abiotic factors, which is why it is important to consider both in terms of soil function. 

Symbiotic N-fixation and root exudates can cause soil carbon and nutrient accumulation 

under vegetation and depletion in non-vegetated areas (Aguiar & Sala, 1999; Perakis et al., 

2017; William H Schlesinger & Pilmanis, 1998; Wang et al., 2007). The bare interspace 

regions between shrubs can experience greater degrees of erosion and nutrient runoff when 

rain or wind events occur (W H Schlesinger et al., 1990), which can redistribute soil, litter, 

and nutrients to vegetated areas at the expense of neighboring bare areas (Alvarez et al., 
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2012; Puigdefabregas et al., 1999). Vegetated areas with more litter can have higher rates of 

water infiltration and less variation in shallow soil water content, which can enhance nutrient 

cycling in water-limited systems (Ludwig et al., 2005; Potts et al., 2010). Even though 

microbial activities and biomass are more dynamic and change faster than nutrient pools, a 

snapshot sample showed similar, albeit weaker, relationships with plant cover (Fig. 2). This 

emphasizes the importance of nitrogen fixing woody plant cover as a dominant driver of soil 

carbon and nutrient cycling in dryland systems. 

There is no consensus on the sequence of changes that occur belowground with 

woody plant encroachment. Maestre et al. (2011) suggest that the increase in soil carbon and 

nutrients that occurs with encroachment enhances microbial exoenzyme activity. Similarly, 

microbial biomass may respond most rapidly to encroachment, followed by an increase in 

soil carbon stocks, and then an increase in some measures of microbial activity such as 

substrate use efficiency (Cable et al., 2009). It is likely that the functional changes in 

microbial activity that are associated with woody plant encroachment are also explained by 

distinct changes in microbial community composition (Hollister et al., 2010; Li et al., 2017; 

Yannarell et al., 2014).  

We suggest that as mesquites establish, they initially have direct impacts on microbial 

activities. This is especially true for nitrogen-specific activities from symbiotic diazotroph 

bacteria in mesquite root nodules that fix atmospheric nitrogen (Allen & Allen, 1981; H. B. 

Johnson & Mayeux, 1990). Over time, this symbiosis will eventually be reflected in changes 

to the quantity and nutrient stoichiometry of plant inputs to soil communities via litter and 

root exudates (Liao & Boutton, 2008). The observed shift in soil microbial activities and 

increased concentrations of DOC, TDN, NH4
+, and MBN (Supp. Table 4) with woody plant 

encroachment could represent enhanced microbial biomass and soil carbon and nutrient 
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cycling. All of these trends are then self-reinforcing: more activity results in greater nutrient 

availability for microbial and plant growth, which further supports greater rates of activity. 

4.2 Environmental variables add modest enhancement to the predictive ability of plant 

cover for the collective soil functionality index 

While plant cover is of paramount importance, the addition of soil physiochemical 

properties, precipitation, and topography improved the prediction power of the models and 

identified other factors such as topography, soil age, and bulk density that contributed to the 

variability observed in collective soil functioning (Fig. 3-5). Consistent with other studies 

(Chen et al., 2019; Florinsky et al., 2004; Liu et al., 2007), topographic variables such as 

slope, elevation, and aspect were consistently important drivers of soil functioning and 

enhanced the predictive capability of models. Although their impact on soil processes is well 

recognized, soil physiochemical variables such as texture and pH did not emerge as 

significant predictors of collective soil functioning when measures of soil carbon, nutrients, 

and dynamics microbial processes were analyzed together in the collective soil functioning 

index. Binning multiple soil variables into a single value can obscure relationships between 

explanatory and response variables, however, which is why it is important to have a certain 

degree of a priori understanding about these relationships before analysis (Bradford et al., 

2014).  

Soil age, one of the most significant abiotic explanatory variables for the collective 

soil functionality index, can provide information on soil texture, horizon development, and 

soil carbon and nutrient pools. For example, older soils at SRER have higher clay content and 

more horizon development than younger soils with higher sand content (Batchily et al., 2003; 

Wheeler et al., 2007). Soil age can also inform soil nutrient status; typically, soils shift from 

N- to P-limitation as they age (Selmants & Hart, 2010; Vitousek & Farrington, 1997). Soil 
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nutrient status can influence which plant traits dominate, such as mycorrhizae associates and 

cluster root development to mine N and P in young to old soils respectively (Lambers et al., 

2008). Associations between plant traits and soil age at SRER have been observed; older 

clay-rich soils have greater perennial grass productivity and mesquite biomass than young 

sandy soils (Browning et al., 2008; Subirge, 1983). Given the strong influence of soil age on 

soil biogeochemistry, it is no surprise that it consistently emerged as a significant predictor of 

soil functionality in this analysis. 

 Bulk density provides information about the level of compaction and porosity in soil; 

soils with lower bulk densities have less compaction, higher porosity, and greater water 

holding capacities (Gupta & Larson, 1979). Since water availability is a dominant control 

over biological activity and nutrient cycling in drylands, it is also no surprise that bulk 

density consistently emerged as an important predictor variable of soil functioning (Figs. 3-5; 

Huxman et al., 2004; James F Reynolds et al., 2004). Soil bulk density regulates the amount 

of nutrient accumulation that occurs during dry periods, with higher bulk density soils having 

lower soil water availability and nutrient concentrations than lower bulk density soils 

(Chaudhari et al., 2013; Stutter & Richards, 2012). Under prolonged periods of drought, 

nutrient accumulation in soil may occur due to reduced microbial growth, limited uptake by 

plants, and a buildup of microbial necromass during dry periods (Borken & Matzner, 2009; 

Sardans & Peñuelas, 2007). A further increase in soil nutrients may occur with a rain event 

due to cell lysis, the release of intracellular solutes, and/or the disruption of soil aggregates 

releasing previously protected organic matter (Borken & Matzner, 2009; Fierer & Schimel, 

2002; Halverson et al., 2000). This helps to explain the strong predictive power of soil bulk 

density in the index of collective soil functioning.  

Many studies have shown the strong correlation between pH and microbial 

community structure and function across a range of ecosystems (Brockett et al., 2012; 
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Docherty et al., 2015; Salazar et al., 2011; Sinsabaugh et al., 2008; Štursová & Baldrian, 

2011). Directly, soil pH can regulate exoenzyme activities through its effects on the 

production of exoenzymes, induced conformational changes to the exoenzyme, potential 

irreversible inactivation of the exoenzyme, and overall availability of substrates and 

coenzymes (Frankenberger & Johanson, 1982; Tabatabai, 1994). For six of the seven 

exoenzymes analyzed, pH was a significant predictor variable and in some cases (NAG and 

PHOS) it was over 3 times more important than the next significant predictor variable (Fig. 

5). Across large scales, pH can reflect controls on weathering and plant community 

composition, which in turn impact nutrient supply and quality, and subsequent microbial 

activity. For example, soils at site E, derived from limestone sedimentary rock, had the 

highest pH of all sites and the lowest activity for all exoenzymes except LAP (Supp. Table 3). 

Furthermore, LAP was the only exoenzyme to have a positive correlation with pH suggesting 

that activity might be suboptimal under acidic conditions (Supp. Table 5). Together these 

results suggest that soil pH could persistently influence microbial activity and emphasize the 

importance of considering this variable when predicting these responses. 

Despite the importance of microbial metabolism in all known biogeochemical cycles, 

there are large uncertainties in earth system models regarding the scaling of soil microbial 

community processes from the micro- to macroscale (Berg, 2012). This uncertainty arises 

from the heterogeneous nature of soil properties across scales and the lack of information 

regarding the relative importance of drivers that influence their dynamics. Here we showed 

that variables such as plant cover and soil physiochemical properties, which have slower 

response times than soil microbial communities, can have persistent impacts on nutrient 

cycling and nutrient pools (Figs. 2-5). As such, even though the microbial parameters we 

measured represent a snapshot in time, the ability to recognize more stable drivers of these 

trends can provide insight into microbial processes across landscapes.    
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5 Conclusions 

Mesquites, credited with creating “islands of fertility” in semiarid landscapes, have 

strong impacts on soil resource pools but their effects on soil microbial process are less 

established. Microbial communities and their activities often respond more rapidly to 

disturbance than soil physiochemical parameters, making them good indicators of changes in 

soil functionality with woody plant encroachment. We developed an index of collective soil 

functioning in a complex landscape undergoing woody plant encroachment that included not 

only soil carbon and nutrient pools but also microbial biomass and activity. Plant cover alone 

accounted for 48.5% of the variability in collective soil functioning, and soils associated with 

mesquites had elevated levels of nutrients, microbial exoenzyme activity, and microbial 

biomass compared to other plant cover types. Some of these trends intensified overtime as 

mesquites aged. Prediction models improved by ca. 7 % and the error term decreased by 13.4 

% with the inclusion of soil physiochemical properties, water dynamics, and topographic 

features. The additional explanatory variables of soil age, bulk density, and pH were 

significant for collective soil functionality in a woody plant encroached system. For many 

individual soil nutrient variables, soil age and bulk density consistently emerged as 

significant predictors, suggesting the roles these variables may have in regulating soil water 

and nutrient dynamics in drylands. Soil pH was the most important predictor variable for 

many exoenzymes assayed, illustrating the significant role of soil pH in regulating microbial 

exoenzyme production and activities. Collectively, our results highlight the relationship 

between microbial activities and accumulation of microbial biomass and soil nutrients in 

association with woody plant encroachment—consistent with the “island of fertility” 

conceptual framework.  



 

 

©2020 American Geophysical Union. All rights reserved. 

Acknowledgments, Samples, and Data 

 This work was supported by NSF DDRI 1735693. REG and DB acknowledge the 

USDA National Institute of Food and Agriculture McIntire Stennis project 1016938.  

 We would also like to thank: Willem J.D. van Leeuwen, Jessica Mitchell, Tom 

Gebhardt, Josh Farella, Noelle Espinosa, Dawson Fairbanks, Clarisa Avalos, Alexis 

Arizpe, Mallory Barnes, Amy Hudson, Chance Muscarella, Emma Jong, Dong Yan, 

David Moore, Greg Barron-Gafford, Bill Smith, Russ Scott, Cynthia Norton, Xian 

Wang, and the UA ART Lab for their expertise, input, analytical assistance, and help 

with field work and laboratory analyses  

 Data supporting conclusions presented in the paper can be found at the University of 

Arizona Data Repository (Farella et al., 2020); 

https://arizona.figshare.com/articles/Data_for_Predicting_drivers_of_collective_soil_f

unction_with_woody_plant_encroachment_in_complex_landscapes_/12273191  

References 

Aguiar, M. R., & Sala, O. E. (1999). Patch structure, dynamics and implications for the 

functioning of arid ecosystems. Trends in Ecology & Evolution, 14(7), 273–277. 

https://doi.org/10.1016/S0169-5347(99)01612-2 

Allen, O. N., & Allen, E. K. (1981). The Leguminosae. A source book of characteristics, uses 

and nodulation. Madison, Wisconsin, USA: Macmillan Publishers Ltd. 

Alvarez, L. J., Epstein, H. E., Li, J., & Okin, G. S. (2012). Aeolian process effects on 

vegetation communities in an arid grassland ecosystem. Ecology and Evolution, 2(4), 

809–821. https://doi.org/10.1002/ece3.205 

Archer, S. (1995). Tree-grass dynamics in a Prosopis-thornscrub savanna parkland: 

Reconstructing the past and predicting. Écoscience, 2(1), 83–99. 

Archer, S., Boutton, T. W., & Hibbard, K. A. (2000). Trees in Grasslands: Biogeochemical 

Consequences of Woody Plant Expansion. In E.-D. Schulze, M. Heimann, S. Harrison, 

E. Holland, J. Lloyd, I. C. Prentice, & D. S. Schimel (Eds.), Global Biogeochemical 

Cycles in the Climate System (pp. 115–130). San Diego: Academic Press. 

Ashworth, J., Keyes, D., Kirk, R., & Lessard, R. (2001). Standard procedure in the 

hydrometer method for particle size analysis. Communications in Soil Science and Plant 

Analysis, 32(5–6), 633–642. https://doi.org/10.1081/CSS-100103897 



 

 

©2020 American Geophysical Union. All rights reserved. 

ASTM. (2007). Standard Test Method for Particle-Size Analysis of Soils. The Annual Book of 

ASTM Standards (Vol. D422-63). https://doi.org/10.1520/D0422-63R07E02 

Van Auken, O. W. (2000). Shrub Invasions of North American Semiarid Grasslands. Annual 

Review of Ecology and Systematics, 31(2000), 197–215. 

Bardgett, R. D., & Van Der Putten, W. H. (2014). Belowground biodiversity and ecosystem 

functioning. Nature, 515(7528), 505–511. https://doi.org/10.1038/nature13855 

Batchily, A. K., Post, D. F., Bryant, R. B., & Breckenfeld, D. J. (2003). Spectral Reflectance 

and Soil Morphology Characteristics of Santa Rita Experimental Range Soils. In 

McClaran, Mitchel P.; Ffolliott, Peter F.; Edminster, Carleton B., tech. coords. Santa 

Rita Experimental Range: 100 years (1903 to 2003) of accomplishments and 

contributions; conference proceedings; 2003 October 30-November 1; Tucson, AZ. 

Proc. RMRS-P-30. (pp. 175–182). 

Beck, T., Joergensen, R. G., Kandeler, E., Makeschin, F., Nuss, E., Oberholzer, H. R., & 

Scheu, S. (1997). An inter-laboratory comparison of ten different ways of measuring soil 

microbial biomass C. Soil Biology and Biochemistry, 29(7), 1023–1032. 

https://doi.org/10.1016/S0038-0717(97)00030-8 

Berg, M. P. (2012). Patterns of Biodiversity at Fine and Small Spatial Scales. In D. H. Wall, 

R. D. Bardgett, V. Behan-Pelletier, & W. H. van der Putten (Eds.), Soil Ecology and 

Ecosystem Services (pp. 136–152). Oxford University Press. 

Blanca, M. J., Alarcón, R., Arnau, J., Bono, R., & Bendayan, R. (2017). Non-normal data: Is 

ANOVA still a valid option? Psicothema, 29(4), 552–557. 

https://doi.org/10.7334/psicothema2016.383 

Bone, J., Barraclough, D., Eggleton, P., Head, M., Jones, D. T., & Voulvoulis, N. (2014). 

Prioritising soil quality assessment through the screening of sites: The use of publicly 

collected data. Land Degradation and Development, 25(3), 251–266. 

https://doi.org/10.1002/ldr.2138 

Borken, W., & Matzner, E. (2009). Reappraisal of drying and wetting effects on C and N 

mineralization and fluxes in soils. Global Change Biology, 15(4), 808–824. 

https://doi.org/10.1111/j.1365-2486.2008.01681.x 

Bouyoucos, G. J. (1962). Hydrometer Method Improved for Making Particle Size Analyses 

of Soils1. Agronomy Journal, 54(5), 464–465. 

https://doi.org/10.2134/agronj1962.00021962005400050028x 

Bradford, M. A., Wood, S. A., Bardgett, R. D., Black, H. I. J., Bonkowski, M., Eggers, T., et 

al. (2014). Discontinuity in the responses of ecosystem processes and multifunctionality 

to altered soil community composition. Proceedings of the National Academy of 

Sciences of the United States of America, 111(40), 14478–14483. 

https://doi.org/10.1073/pnas.1413707111 

Brockett, B. F. T., Prescott, C. E., & Grayston, S. J. (2012). Soil moisture is the major factor 

influencing microbial community structure and enzyme activities across seven 

biogeoclimatic zones in western Canada. Soil Biology and Biochemistry, 44(1), 9–20. 

https://doi.org/10.1016/j.soilbio.2011.09.003 

Brookes, P., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Chloroform fumigation 

and the release of soil nitrogen: A rapid direct extraction method to measure microbial 



 

 

©2020 American Geophysical Union. All rights reserved. 

biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837–842. 

https://doi.org/10.1016/0038-0717(85)90144-0 

Browning, D. M., & Archer, S. R. (2011). Protection from livestock fails to deter shrub 

proliferation in a desert landscape with a history of heavy grazing. Ecological 

Applications, 21(5), 1629–1642. https://doi.org/10.1890/10-0542.1 

Browning, D. M., Archer, S. R., Asner, G. P., McClaran, M. P., & Wessman, C. A. (2008). 

Woody plants in grasslands: Post-encroachment stand dynamics. Ecological 

Applications, 18(4), 928–944. https://doi.org/10.1890/07-1559.1 

Browning, D. M., Franklin, J., Archer, S. R., Gillan, J. K., & Guertin, D. P. (2014). Spatial 

patterns of grassland – shrubland state transitions : a 74-year record on grazed and 

protected areas. Ecological Applications, 24(6), 1421–1433. 

Cable, J. M., Ogle, K., Tyler, A. P., Pavao-Zuckerman, M. A., & Huxman, T. E. (2009). 

Woody plant encroachment impacts on soil carbon and microbial processes: Results 

from a hierarchical Bayesian analysis of soil incubation data. Plant and Soil, 320(1–2), 

153–167. https://doi.org/10.1007/s11104-008-9880-1 

Campbell, B. D., & Stafford Smith, D. M. (2000). A synthesis of recent global change 

research on pasture and rangeland production: Reduced uncertainties and their 

management implications. Agriculture, Ecosystems and Environment, 82(1–3), 39–55. 

https://doi.org/10.1016/S0167-8809(00)00215-2 

Cao, H., Chen, R., Wang, L., Jiang, L., Yang, F., Zheng, S., et al. (2016). Soil pH, total 

phosphorus, climate and distance are the major factors influencing microbial activity at a 

regional spatial scale. Scientific Reports, 6(April), 1–10. 

https://doi.org/10.1038/srep25815 

Charley, J. L., & West, N. E. (1975). Plant-Induced Soil Chemical Patterns in Some Shrub-

Dominated Semi-Desert Ecosystems of Utah. The Journal of Ecology, 63(3), 945–963. 

https://doi.org/10.2307/2258613 

Chaudhari, P. R., Ahire, D. V, Ahire, V. D., Chkravarty, M., & Maity, S. (2013). Soil Bulk 

Density as related to Soil Texture, Organic Matter Content and available total Nutrients 

of Coimbatore Soil. International Journal of Scientific and Research Publications, 3(1), 

2250–3153. https://doi.org/10.2136/sssaj2015.11.0407 

Chen, L., Xiang, W., Wu, H., Ouyang, S., Zhou, B., Zeng, Y., et al. (2019). Tree species 

identity surpasses richness in affecting soil microbial richness and community 

composition in subtropical forests. Soil Biology and Biochemistry, 130(November 

2018), 113–121. https://doi.org/10.1016/j.soilbio.2018.12.008 

Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial 

Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter 

decomposition with soil organic matter stabilization: Do labile plant inputs form stable 

soil organic matter? Global Change Biology, 19(4), 988–995. 

https://doi.org/10.1111/gcb.12113 

Day, P. R. (1965). Particle Fractionation and Particle-Size Analysis. In C. A. Black (Ed.), 

Methods of soil analysis, Part 1. (pp. 545–567). Madison, Wisconsin, USA: American 

Society of Agronomy. https://doi.org/10.2134/agronmonogr9.1.c43 

Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., 



 

 

©2020 American Geophysical Union. All rights reserved. 

et al. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. 

Nature Communications, 7(1), 10541. https://doi.org/10.1038/ncomms10541 

Doane, T. a., & Horwáth, W. R. (2003). Spectrophotometric Determination of Nitrate with a 

Single Reagent. Analytical Letters, 36(12), 2713–2722. https://doi.org/10.1081/AL-

120024647 

Docherty, K. M., Borton, H. M., Espinosa, N., Gebhardt, M., Gil-Loaiza, J., Gutknecht, J. L. 

M., et al. (2015). Key edaphic properties largely explain temporal and geographic 

variation in soil microbial communities across four biomes. PLoS ONE, 10(11), 1–23. 

https://doi.org/10.1371/journal.pone.0135352 

Drenovsky, R. E., Steenwerth, K. L., Jackson, L. E., & Scow, K. M. (2010). Land use and 

climatic factors structure regional patterns in soil microbial communities. Global 

Ecology and Biogeography, 19(1), 27–39. https://doi.org/10.1111/j.1466-

8238.2009.00486.x 

Eldridge, D. J., Bowker, M. A., Maestre, F. T., Roger, E., Reynolds, J. F., & Whitford, W. G. 

(2011). Impacts of shrub encroachment on ecosystem structure and functioning: 

Towards a global synthesis. Ecology Letters, 14(7), 709–722. 

https://doi.org/10.1111/j.1461-0248.2011.01630.x 

Evans, S. E., & Wallenstein, M. D. (2012). Soil microbial community response to drying and 

rewetting stress: Does historical precipitation regime matter? Biogeochemistry, 109(1–

3), 101–116. https://doi.org/10.1007/s10533-011-9638-3 

Farella, M. M., Breshears, D. D., & Gallery, R. (2020). Data for “Predicting drivers of 

collective soil function with woody plant encroachment in complex landscapes.” 

https://doi.org/10.25422/azu.data.12273191 

Field, C. B. (1998). Primary Production of the Biosphere: Integrating Terrestrial and Oceanic 

Components. Science, 281(5374), 237–240. 

https://doi.org/10.1126/science.281.5374.237 

Fierer, N., & Schimel, J. P. (2002). Effects of drying-rewetting frequency on soil carbon and 

nitrogen transformations. Soil Biology and Biochemistry, 34(6), 777–787. 

https://doi.org/10.1016/S0038-0717(02)00007-X 

Fierer, N., Ladau, J., Clemente, J. C., Leff, J. W., Owens, S. M., Pollard, K. S., et al. (2013). 

Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie 

soils in the United States. Science, 342(6158), 621–4. 

https://doi.org/10.1126/science.1243768 

Florinsky, I. V., McMahon, S., & Burton, D. L. (2004). Topographic control of soil microbial 

activity: A case study of denitrifiers. Geoderma, 119(1–2), 33–53. 

https://doi.org/10.1016/S0016-7061(03)00224-6 

Frankenberger, W. T., & Johanson, J. B. (1982). Effect of pH on enzyme stability in soils. 

Soil Biology and Biochemistry, 14(5), 433–437. https://doi.org/10.1016/0038-

0717(82)90101-8 

Gamfeldt, L., Hillebrand, H., & Jonsson, P. R. (2008). Multiple functions increase the 

importance of biodiversity for overall ecosystem functioning. Ecology, 89(5), 1223–

1231. https://doi.org/10.1890/06-2091.1 

Gebhardt, M., Fehmi, J. S., Rasmussen, C., & Gallery, R. E. (2017). Soil amendments alter 



 

 

©2020 American Geophysical Union. All rights reserved. 

plant biomass and soil microbial activity in a semi-desert grassland. Plant and Soil, 

419(1–2), 53–70. https://doi.org/10.1007/s11104-017-3327-5 

Glass, G. V, Peckham, P. D., & Sanders, J. R. (1972). Consequences of Failure to Meet 

Assumptions Underlying the Fixed Effects Analyses of Variance and Covariance. 

Educational Research, 42(3), 237–288. 

González-Roglich, M., Swenson, J. J., Jobbágy, E. G., & Jackson, R. B. (2014). Shifting 

carbon pools along a plant cover gradient in woody encroached savannas of central 

Argentina. Forest Ecology and Management, 331, 71–78. 

https://doi.org/10.1016/j.foreco.2014.07.035 

Gupta, S. C., & Larson, W. E. (1979). Estimating soil water retention characteristics from 

particle size distribution, organic matter percent, and bulk density. Water Resources 

Research, 15(6), 1633–1635. https://doi.org/10.1029/WR015i006p01633 

Halverson, L. J., Jones, T. M., & Firestone, M. K. (2000). Release of intracellular solutes by 

four soil bacteria exposed to dilution stress. Soil Science Society of America Journal, 

64(5), 1630–1637. 

Harwell, M. R., Rubinstein, E. N., Hayes, W. S., & Olds, C. C. (1992). Summarizing Monte 

Carlo Results in Methodological Research : The One- and Two-Factor Fixed Effects 

ANOVA Cases Author ( s ): Michael R . Harwell , Elaine N . Rubinstein , William S . 

Hayes and Corley C . Olds Published by : American Educational Research A. American 

Educational Research Association and American Statistical Associatoin, 17(4), 315–

339. 

Hollister, E. B., Schadt, C. W., Palumbo, A. V., James Ansley, R., & Boutton, T. W. (2010). 

Structural and functional diversity of soil bacterial and fungal communities following 

woody plant encroachment in the southern Great Plains. Soil Biology and Biochemistry, 

42(10), 1816–1824. https://doi.org/10.1016/j.soilbio.2010.06.022 

Huxman, T. E., Snyder, K. a, Tissue, D., Leffler,  a J., Ogle, K., Pockman, W. T., et al. 

(2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. 

Oecologia, 141(2), 254–268. https://doi.org/10.1007/s00442-004-1682-4 

Huxman, T. E., Wilcox, B. P., Breshears, D. D., Scott, R. L., Snyder, K. A., Small, E. E., et 

al. (2005). Ecohydrological Implications of Woody Plant Encroachment. Ecology, 86(2), 

308–319. https://doi.org/10.1890/03-0583 

Johnson, H. B., & Mayeux, H. S. (1990). Prosopis glandulosa and the nitrogen balance of 

rangelands: extent and occurrence of nodulation. Oecologia, 84(2), 176–185. 

https://doi.org/10.1007/BF00318269 

Johnson, S. L., Kuske, C. R., Carney, T. D., Housman, D. C., Verne, G.-G. La, & Belanp, J. 

(2012). Increased temperature and altered summer precipitation have differential effects 

on biological soil crusts in a dryland ecosystem. Global Change Biology, 18(8), 2583–

2593. https://doi.org/10.1111/j.1365-2486.2012.02709.x 

Karlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. 

(1997). Soil quality: A concept, definition, and framework for evaluation: (A guest 

editorial). Soil Science Society of America Journal, 61(1), 4–10. 

https://doi.org/10.2136/sssaj1997.03615995006100010001x 

Kuske, C., Ticknor, L., Miller, M., Dunbar, J., Davis, J., Barns, S., & Belnap, J. (2002). 



 

 

©2020 American Geophysical Union. All rights reserved. 

Comparison of soil bacterial communities in rhizospheres of three plant species and the 

interspaces in an arid grassland. Applied and Environmental Microbiology, 68(4), 1854–

1863. https://doi.org/10.1128/AEM.68.4.1854 

Lambers, H., Raven, J. A., Shaver, G. R., & Smith, S. E. (2008). Plant nutrient-acquisition 

strategies change with soil age. Trends in Ecology and Evolution, 23(2), 95–103. 

https://doi.org/10.1016/j.tree.2007.10.008 

Li, H., Zhang, J., Hu, H., Chen, L., Zhu, Y., Shen, H., et al. (2017). Shift in soil microbial 

communities with shrub encroachment in Inner Mongolia grasslands, China. European 

Journal of Soil Biology, 79, 40–47. https://doi.org/10.1016/j.ejsobi.2017.02.004 

Liao, J. D., & Boutton, T. W. (2008). Soil microbial biomass response to woody plant 

invasion of grassland. Soil Biology and Biochemistry, 40(5), 1207–1216. 

https://doi.org/10.1016/j.soilbio.2007.12.018 

Liu, W., Xu, W., Han, Y., Wang, C., & Wan, S. (2007). Responses of microbial biomass and 

respiration of soil to topography, burning, and nitrogen fertilization in a temperate 

steppe. Biology and Fertility of Soils, 44(2), 259–268. https://doi.org/10.1007/s00374-

007-0198-6 

Lix, L. M., Keselman, J. C., & Keselman, H. J. (1996). Consequences of assumption 

violations revisited: A quantitative review of alternatives to the one-way analysis of 

variance F test. Review of Educational Research, 66(4), 579–619. 

https://doi.org/10.3102/00346543066004579 

Ludwig, J. A., Wilcox, B. P., Breshears, D. D., Tongway, D. J., & Imeson, A. C. (2005). 

Vegetation patches and runoff-erosion as interacting ecohydrological processes in 

semiarid landscapes. Ecology, 86(2), 288–297. https://doi.org/10.1890/03-0569 

Maestre, F. T., Puche, M. D., Guerrero, C., & Escudero, A. (2011). Shrub encroachment does 

not reduce the activity of some soil enzymes in Mediterranean semiarid grasslands. Soil 

Biology and Biochemistry, 43(8), 1746–1749. 

https://doi.org/10.1016/j.soilbio.2011.04.023 

Maestre, F. T., Quero, J. L., Gotelli, N. J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., 

et al. (2012). Plant Species Richness and Ecosystem Multifunctionality in Global 

Drylands. Science, 335(6065), 214–218. https://doi.org/10.1126/science.1215442 

McClaran, M. P., McMurtry, C. R., & Archer, S. R. (2013). A tool for estimating impacts of 

woody encroachment in arid grasslands: Allometric equations for biomass, carbon and 

nitrogen content in Prosopis velutina. Journal of Arid Environments, 88, 39–42. 

https://doi.org/10.1016/j.jaridenv.2012.08.015 

McClaran, Mitchel P. (2003). A Century of Vegetation Change on the Santa Rita 

Experimental Range. USDA Forest Service Proceedings RMRS-P-30, (520), 16–33. 

McClaran, Mitchel P., Angell, D. L., & Wissler, C. (2002). Santa Rita Experimental Range 

digital database: user’s guide. USDA Forest Service - General Technical Report RMRS-

GTR. Ogden, UT. Retrieved from http://www.fs.fed.us/rm/pubs/rmrs_gtr100.pdf 

MEA. (2005). Ecosystems and Human Well-Being: Desertification Synthesis. Washington, 

D.C. 

Nelson, D. W., & Sommers, L. E. (1965). Total Carbon, Organic Carbon, and Organic 

Matter. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties 



 

 

©2020 American Geophysical Union. All rights reserved. 

(pp. 539–579). Madison, Wisconsin: American Society of Agronomy, Inc. 

Nicol, G. W., Leininger, S., Schleper, C., & Prosser, J. I. (2008). The influence of soil pH on 

the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and 

bacteria. Environmental Microbiology, 10(11), 2966–2978. 

https://doi.org/10.1111/j.1462-2920.2008.01701.x 

Pacala, S. W., Hurtt, G. C., Baker, D., Peylin, P., Houghton, R. A., Birdsey, R. A., et al. 

(2001). Consistent Land- and Atmosphere-Based U.S. Carbon Sink Estimates. Science, 

292(5525), 2316–2320. https://doi.org/10.1126/science.1057320 

Paz-Ferreiro, J., & Fu, S. (2016). Biological Indices for Soil Quality Evaluation: Perspectives 

and Limitations. Land Degradation and Development, 27(1), 14–25. 

https://doi.org/10.1002/ldr.2262 

Perakis, S. S., Pett-Ridge, J. C., & Catricala, C. E. (2017). Nutrient feedbacks to soil 

heterotrophic nitrogen fixation in forests. Biogeochemistry, 134(1–2), 41–55. 

https://doi.org/10.1007/s10533-017-0341-x 

Potts, D. L., Scott, R. L., Bayram, S., & Carbonara, J. (2010). Woody plants modulate the 

temporal dynamics of soil moisture in a semi-arid mesquite savanna. Ecohydrology, 

3(December 2009), 20–27. https://doi.org/10.1002/eco.91 

Puigdefabregas, J., Sole, A., Gutierrez, L., del Barrio, G., & Boer, M. (1999). Scales and 

processes of water and sediment redistribution in drylands: results from the Rambla 

Honda field site in Southeast Spain. Earth-Science Reviews, 48(1–2), 39–70. 

https://doi.org/10.1016/S0012-8252(99)00046-X 

R Core Team. (2018). R: A language and environment for statistical computing. Vienna, 

Austria: R Foundation for Statistical Computing. Retrieved from http://www.r-

project.org/ 

Ratajczak, Z., Nippert, J. B., & Collins, S. L. (2012). Woody encroachment decreases 

diversity across North American grasslands and savannas. Ecology, 93(4), 697–703. 

https://doi.org/10.1890/11-1199.1 

Reyes-Reyes, G., Baron-Ocampo, L., Cuali-Alvarez, I., Frias-Hernandez, J. T., Olalde-

Portugal, V., Varela Fregoso, L., & Dendooven, L. (2002). C and N dynamics in soil 

from the central highlands of Mexico as affected by mesquite (Prosopis spp.) and 

huizache (Acacia tortuoso): A laboratory investigation. Applied Soil Ecology, 19(1), 27–

34. https://doi.org/10.1016/S0929-1393(01)00169-X 

Reynolds, J. F., Smith, D. M. S., Lambin, E. F., Turner, B. L., Mortimore, M., Batterbury, S. 

P. J., et al. (2007). Global Desertification: Building a Science for Dryland Development. 

Science, 316(5826), 847–851. https://doi.org/10.1126/science.1131634 

Reynolds, James F, Kemp, P. R., Ogle, K., & Fernández, R. J. (2004). Modifying the “pulse-

reserve” paradigm for deserts of North America: precipitation pulses, soil water, and 

plant responses. Oecologia, 141(2), 194–210. https://doi.org/10.1007/s00442-004-1524-

4 

Rhine, E. D., Mulvaney, R. L., Pratt, E. J., & Sims, G. K. (1998). Improving the Berthelot 

Reaction for Determining Ammonium in Soil Extracts and Water. Soil Science Society 

of America Journal, 62(2), 473. 

https://doi.org/10.2136/sssaj1998.03615995006200020026x 



 

 

©2020 American Geophysical Union. All rights reserved. 

Robertson, G., Wedin, D., Groffman, P., Blair, J., Holland, E., Nadelhoffer, K., et al. (1999). 

Soil carbon and nitrogen availability. Nitrogen mineralization, nitrification and soil 

respiration potentials. Standard Soil Methods for Long-Term Ecological Research, 258–

271. 

Salazar, S., Sánchez, L. E., Alvarez, J., Valverde, A., Galindo, P., Igual, J. M., et al. (2011). 

Correlation among soil enzyme activities under different forest system management 

practices. Ecological Engineering, 37(8), 1123–1131. 

https://doi.org/10.1016/j.ecoleng.2011.02.007 

Sardans, J., & Peñuelas, J. (2007). Drought changes phosphorus and potassium accumulation 

patterns in an evergreen Mediterranean forest. Functional Ecology, 21(2), 191–201. 

https://doi.org/10.1111/j.1365-2435.2007.01247.x 

Saxton, K. E., & Rawls, W. J. (2006). Soil Water Characteristic Estimates by Texture and 

Organic Matter for Hydrologic Solutions. Soil Science Society of America Journal, 

70(5), 1569–1578. https://doi.org/10.2136/sssaj2005.0117 

Schade, J. D., & Hobbie, S. E. (2005). Spatial and temporal variation in islands of fertility in 

the Sonoran Desert. Biogeochemistry, 73(3), 541–553. https://doi.org/10.1007/s10533-

004-1718-1 

Schlesinger, W H, Reynolds, J. F., Cunningham, G. L., Huenneke, L. F., Jarrell, W. M., 

Virginia, R. a, & Whitford, W. G. (1990). Biological Feedbacks in Global 

Desertification. Science, 247(4946), 1043–1048. 

https://doi.org/10.1126/science.247.4946.1043 

Schlesinger, William H, & Pilmanis, A. M. (1998). Plant-soil Interactions in Deserts. 

Biogeochemistry, 42(1), 169–187. https://doi.org/10.1023/A:1005939924434 

Selmants, P. C., & Hart, S. C. (2010). Phosphorus and soil development: Does the Walker 

and Syers model apply to semiarid ecosystems? Ecology, 91(2), 474–484. 

https://doi.org/10.1890/09-0243.1 

Sevastas, S., Gasparatos, D., Botsis, D., Siarkos, I., Diamantaras, K. I., & Bilas, G. (2018). 

Predicting bulk density using pedotransfer functions for soils in the Upper 

Anthemountas basin, Greece. Geoderma Regional, 14, e00169. 

https://doi.org/10.1016/j.GEODRS.2018.e00169 

Sinsabaugh, R. L., Antibus, R. K., & Linkins, A. E. (1991). An enzymic approach to the 

analysis of microbial activity during plant litter decomposition. Agriculture, Ecosystems 

and Environment, 34(1–4), 43–54. https://doi.org/10.1016/0167-8809(91)90092-C 

Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., 

et al. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 

11(11), 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x 

Štursová, M., & Baldrian, P. (2011). Effects of soil properties and management on the 

activity of soil organic matter transforming enzymes and the quantification of soil-bound 

and free activity. Plant and Soil, 338(1), 99–110. https://doi.org/10.1007/s11104-010-

0296-3 

Stutter, M. I., & Richards, S. (2012). Relationships between soil physicochemical, 

microbiological properties, and nutrient release in buffer soils compared to field soils. 

Journal of Environmental Quality, 41(2), 400–409. 



 

 

©2020 American Geophysical Union. All rights reserved. 

https://doi.org/10.2134/jeq2010.0456 

Subirge, T. G. (1983). Soil-plant relations on the Santa Rita Experimental Range. University 

of Arizona. 

Tabatabai, M. A. (1994). Soil Enzymes. In R. W. Weaver, S. Angle, P. Bottomley, D. 

Bezdicek, S. Smith, A. Tabatabai, & A. Wollom (Eds.), Methods of Soil Analysis. Part 

2. Microbiological and Biochemical Properties (pp. 775–833). Madison, Wisconsin: 

Soil Science Society of America. 

Throop, H. L., & Archer, S. R. (2008). Shrub (Prosopis velutina) encroachment in a 

semidesert grassland: Spatial-temporal changes in soil organic carbon and nitrogen 

pools. Global Change Biology, 14(10), 2420–2431. https://doi.org/10.1111/j.1365-

2486.2008.01650.x 

Vitousek, P. M., & Farrington, H. (1997). Nutrient Limitation and Soil Development: 

Experimental Test of a Biogeochemical Theory. Biogeochemistry, 37(1), 63–75. 

https://doi.org/https://doi.org/10.1023/A:1005757218475 

Wallenstein, M. D., Haddix, M. L., Lee, D. D., Conant, R. T., & Paul, E. a. (2012). A litter-

slurry technique elucidates the key role of enzyme production and microbial dynamics in 

temperature sensitivity of organic matter decomposition. Soil Biology and Biochemistry, 

47, 18–26. https://doi.org/10.1016/j.soilbio.2011.12.009 

Wang, Y. P., Houlton, B. Z., & Field, C. B. (2007). A model of biogeochemical cycles of 

carbon, nitrogen, and phosphorus including symbiotic nitrogen fixation and phosphatase 

production. Global Biogeochemical Cycles, 21(1), 1–15. 

https://doi.org/10.1029/2006GB002797 

Wheeler, C. W., Archer, S. R., Asner, G. P., & Mcmurtry, C. R. (2007). Climatic/Edaphic 

Controls on Soil Carbon/Nitrogen Response To Shrub Encroachment in Desert 

Grassland. Ecological Applications, 17(7), 1911–1928. https://doi.org/10.1890/06-

1580.1 

Yannarell, A. C., Menning, S. E., & Beck, A. M. (2014). Influence of Shrub Encroachment 

on the Soil Microbial Community Composition of Remnant Hill Prairies. Microbial 

Ecology, 67(4), 897–906. https://doi.org/10.1007/s00248-014-0369-6 

Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., et al. (2011). Microbial mediation of 

carbon-cycle feedbacks to climate warming. Nature Climate Change, 2(2), 106–110. 

https://doi.org/10.1038/nclimate1331 

 

  



 

 

©2020 American Geophysical Union. All rights reserved. 

 
 

Fig. 1: Geomorphic surfaces and location of sites across the study area. Photographs provide 

an overview of the diversity of the geomorphic surfaces. Map shows location of study area 

(red) within Arizona, geomorphic surface distribution across the study area, and location of 

the sites included in the analysis (labeled A-G corresponding to each geomorphic surface and 

numbers indicate the site replicate). Geomorphic surfaces (defined in Batchily et al. 2003) 

captured variation in landform type, soil age, and parent material. The table inset defined 

each of these classifications for the geomorphic surfaces across the study area. Drone 

imagery courtesy of Willem J.D. van Leeuwen. 
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Fig. 2: Differences in soil nutrients (a-e), exoenzyme activity (f-l), and microbial biomass 

concentration (m-o) in soils collected from mesquite bole (N = 18), grass (N = 17), and bare 

ground (N = 15) samples. Boxes in the boxplots represent the 75th (upper portion) and 25th 

(bottom portion) percentiles of soil organic matter % (a), dissolved organic carbon (DOC; b), 

total dissolved nitrogen (TDN; c), ammonium concentration (NH4+; d), nitrate concentration 

(NO3-; e), α-Glucosidase exoenzyme activity (AG; f), β-Glucosidase exoenzyme activity 

(BG; g), β-D-cellubiosidase exoenzyme activity (CB; h), β-Xylosidase exoenzyme activity 

(XYL; i), N-acetyl-β-Glucosaminidase exoenzyme activity (NAG;j), leucine aminopeptidase 

exoenzyme activity (LAP; k); Phosphatase exoenzyme activity (PHOS; l) ; microbial biomass 

carbon (MBC; m), microbial biomass nitrogen (MBN; n), and DNA concentration (o). The 

band in the middle of the box represents the median value. Outliers are symbolized as open 

points and whiskers extend to lower and upper quartiles times 1.5 the interquartile range. 

Values at the top of each column represent MANOVA results for all variables in the column. 

Letters, which represent Tukey HSD significance, are presented when p < 0.05. All 

exoenzyme activities presented in (nmol activity/g dry soil/hr). 
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Fig. 3: Predictor variable importance values for the collective soil functionality index. Graph 

shows the random forest variable importance (% increase in MSE; mean square error) of 

plant variables only (a) and plant and environment variables (b) for the collective soil 

functionality index. Plant variables (green bars), soil physiochemical properties (brown bars), 

precipitation values (blue bars), and topographic factors (gray bars) are symbolized according 

to variable type. The “*” and “**” indicate significant levels (p < 0.05 and p < 0.01, 

respectively) of predictor variables. AGB, aboveground biomass; BD, bulk density; PM, soil 

parent material.  
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Fig. 4: Predictor variable importance values for individual soil nutrients. Graph shows the 

random forest variable importance (% increase in MSE; mean square error) of plant and 

environment variables for percent soil organic matter (OM %; a), dissolved organic carbon 

(DOC; b), total dissolved nitrogen (TDN; c), ammonium concentration (NH4+; d), and nitrate 

concentration (NO3-; e). Plant variables (green bars), soil physiochemical properties (brown 

bars), precipitation values (blue bars), and topographic factors (gray bars) are symbolized 

according to variable type. The “*” and “**” indicate significant levels (p < 0.05 and p < 

0.01, respectively) of predictor variables. AGB, aboveground biomass; BD, bulk density; 

PM, soil parent material. 
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Fig. 5: Predictor variable importance values for individual microbial activity and biomass 

metrics. Graph shows the random forest variable importance (% increase in MSE; mean 

square error) of plant and environment variables for potential exoenzyme activities (a-g) and 

microbial biomass concentrations (h-j). Plant variables (green bars), soil physiochemical 

properties (brown bars), precipitation values (blue bars), and topographic factors (gray bars) 

are symbolized according to variable type. The “*” and “**” indicate significant levels (p < 

0.05 and p < 0.01, respectively) of predictor variables. AGB, aboveground biomass; BD, bulk 

density; PM, soil parent material. AG, α-Glucosidase exoenzyme activity; BG, β-Glucosidase 

exoenzyme activity; CB, β-D-cellubiosidase exoenzyme activity; XYL, β-Xylosidase 

exoenzyme activity; NAG, N-acetyl-β-Glucosaminidase exoenzyme activity; LAP, leucine 

aminopeptidase exoenzyme activity; PHOS, Phosphatase exoenzyme activity; MBC, 

microbial biomass carbon; MBN, microbial biomass nitrogen; DNA, DNA concentration. 

 


